Place Value Through the Millions

Millions Period			Thousands Period			Ones Period		
Hundreds	Tens	Ones	Hundreds	Tens	Ones	Hundreds	Tens	Ones
	9	1	4	0	2	6	0	0

The digits in large numbers are in groups of three places. The groups are called periods. Commas are usually used to separate the periods.

Write: 91,402,600
Example: What is the value of the digit 4 in 91,402,600?
Answer: the digit 4 is in the hundred thousands place. Its value is 4 hundred thousand or 400,000.

Reading Large Numbers

Reading large numbers is easier than it looks. You only need to know

- How to read 3-digit numbers, and
- The names of the periods.

Math Vocabulary to Know:

Standard Form: The usual way of writing a number that shows only its digits, no words. EX: 24,678

Expanded Form: The representation of a number as a sum that shows only the value of each digit. EX: 105,073 = 100,000 + $5,000+70+3$

Word Form: The form of a number that uses written words. EX: 16,499 = sixteen thousand, four hundred ninety-nine.

Notice that commas are placed as they would be in a standard form number and two-digit numbers are hyphenated. Students should not use the word "and" when reciting numbers.

Reading Large Numbers Homework
Practice with your child several times this week. Return this form on Friday.
Our numbers are divided into 3-digit groups called periods. The periods are separated by commas. Each comma has it's own name: thousand, million, billion, etc. If you can read a 3digit number, and you know the comma names, you can read ANY number! Remember, do not use the word $A N D$ in any numbers!

Place Value Through the Millions

Millions Period			Thousands Period			Ones Period		
Hundreds	Tens	Ones	Hundreds	Tens	Ones	Hundreds	Tens	Ones
	$\mathbf{9}$	$\mathbf{1}$	$\mathbf{4}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{6}$	$\mathbf{0}$	$\mathbf{0}$

The digits in large numbers are in groups of three places. The groups are called periods. Commas are usually used to separate the periods.

Write: 91,402,600
Example: What is the value of the digit 4 in $91,402,600$?
Answer: the digit $\mathbf{4}$ is in the hundred thousands place. Its value is 4 hundred thousand or $\mathbf{4 0 0 , 0 0 0}$.

Reading Large Numbers

Reading large numbers is easier than it looks. You only need to know

- How to read 3-digit numbers, and
- The names of the periods.

Example: How do you read 2,469,600?

1. Start at the left. Read the first comma. Say the name of the period. \rightarrow two million

2. Read to the 2nd comma. Say the name of the next period. \rightarrow four hundred sixty-nine thousand.
3. Read the three-digit number in the ones period. \rightarrow six hundred

- You don't say the name of the ones period.

Answer: Say: two million, four hundred sixty-nine thousand, six hundred.

Have your child practice reading the numbers on the back of this sheet. Feel free to add larger numbers if you like. For extra practice ask them what the value of individual numbers are.
Example: 45, 7933, 046---what is the value of the $9 ? 90,000$
What is the place value of the 9 ? Ten thousands place

Please work with your child and complete the worksheet on the other side, sign and return on Friday, September $20^{\text {th }}$. Thank you!

Student Name:

Remember, don't say " and"

$$
\text { 1. } 4, \underline{3} 08
$$

2. 19,038
3. 59,727
4. $\underline{603}, 115$
5. 8880,002
6. $32,0 \underline{7} 2$
7. $2,3 \underline{9} 5,918$
8. $6,034,254$
9. $73,404,003$
10. $34,00 \underline{3}$
11. 293, 032
12. $\underline{943}, 005,924$
13. $99,361,0 \underline{5} 8$
14. 802, 045, 132
15. $72,004,008$

Practice saying the place value and value of the underlined numbers in the first column.
On this side write down the other numbers you read \& practiced.
\qquad
\square
\qquad
\qquad
\qquad .

